Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
RSC Adv ; 14(12): 8313-8321, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38469185

RESUMO

Lithium niobate (LiNbO3) single crystals are a kind of ferroelectric material with a high piezoelectric coefficient and Curie temperature, which is suitable for the preparation of piezoelectric pressure sensors. However, there is little research reporting on the use of LiNbO3 single crystals to prepare piezoelectric pressure sensors. Therefore, in this paper, LiNbO3 was used to prepare piezoelectric pressure sensors to study the feasibility of using LiNbO3 single crystals as a sensitive material for piezoelectric pressure sensors. In addition, chemical mechanical polishing (CMP) technology was used to prepare LiNbO3 crystals with different thicknesses to study the influence of these LiNbO3 crystals on the electric charge output of the sensors. The results showed that the sensitivity of a 300 µm sample (0.218 mV kPa-1) was about 1.23 times that of a 500 µm sample (0.160 mV kPa-1). Low-temperature polymer heterogeneous integration and oxygen plasma activation technologies were used to realize the heterogeneous integration of LiNbO3 and silicon to prepare piezoelectric pressure sensors, which could significantly improve the sensitivity of the sensor by approximately 16.06 times (2.569 mV kPa-1) that of the original sample (0.160 mV kPa-1) due to an appropriate residual stress that did not shatter LiNbO3 or silicon, thus providing a possible method for integrating piezoelectric pressure sensors and integrated circuits.

2.
Int J Biol Macromol ; 264(Pt 1): 130448, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428756

RESUMO

As lignocellulose recalcitrance principally restricts for a cost-effective conversion into biofuels and bioproducts, this study re-selected the brittle stalk of corn mutant by MuDR-transposon insertion, and detected much reduced cellulose polymerization and crystallinity. Using recyclable CaO chemical for biomass pretreatment, we determined a consistently enhanced enzymatic saccharification of pretreated corn brittle stalk for higher-yield bioethanol conversion. Furthermore, the enzyme-undigestible lignocellulose was treated with two-step thermal-chemical processes via FeCl2 catalysis and KOH activation to generate the biochar with significantly raised adsorption capacities with two industry dyes (methylene blue and Congo red). However, the desirable biochar was attained from one-step KOH treatment with the entire brittle stalk, which was characterized as the highly-porous nanocarbon that is of the largest specific surface area at 1697.34 m2/g and 2-fold higher dyes adsorption. Notably, this nanocarbon enabled to eliminate the most toxic compounds released from CaO pretreatment and enzymatic hydrolysis, and also showed much improved electrochemical performance with specific capacitance at 205 F/g. Hence, this work has raised a mechanism model to interpret how the recalcitrance-reduced lignocellulose is convertible for high-yield bioethanol and multiple-function biochar with high performance.


Assuntos
Celulose , Carvão Vegetal , Zea mays , Celulose/química , Zea mays/química , Polimerização , Corantes
3.
ACS Omega ; 9(5): 5780-5787, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38343983

RESUMO

Antiferroelectric (AFE) films have received a lot of attention for their high energy storage density and temperature stability, giving them potential in electrostatic energy storage devices. In this work, La-doped PZT AFE films were prepared through a sol-gel procedure, and energy storage properties within a wide temperature range (73-533 K) were explored. Typical dipoles rotate in one direction along electric fields, combined with phase transition behavior. The polarization behavior is modulated by both electric field and temperature. With increasing temperature, the saturation polarization strength decreases due to the phase transition from the AFE state to the ferroelectric state. Besides, the temperature dependence of electrical properties was investigated, and the energy storage density of Pb0.97La0.02(Zr0.95Ti0.05)O3 films was about 5.84 J/cm3 in the low temperature range (<273.15 K). All results indicate the great potential of AFE films in pulse power device applications, especially in low-temperature ranges.

4.
Anal Bioanal Chem ; 416(2): 509-518, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37989848

RESUMO

The application of standing surface acoustic wave (SSAW) tweezers based on backpropagation superposition to achieve precise behavior manipulation of microscale cells and even nanoscale bacteria has been widely studied and industrialized. However, the structure requires multiple transducer components or full channel resonance. It is very challenging to design a simple structure for nano-control by complex acoustic field. In this study, a reflector-interdigital transducer (R-IDT) acoustofluidic device based on unilateral coherence enhancement is proposed to achieve SSAW definition features of periodic particle capture positions. The SAW device based on a unilateral transducer can not only generate leaky-SAW in water-filled microchannel, but also have a contribution of spherical waves in the vibration area of the substrate-liquid interface due to the Huygens-Fresnel diffractive principle. Both of them form a robust time-averaged spatial periodicity in the pressure potential gradient, accurately predicting the lateral spacing of these positions through acoustic patterning methods. Furthermore, a reflector based on Bragg-reflection is used to suppress backward transmitted SAW and enhance forward conducted SAW beams. By using a finite element model, R-IDT structure's amplitude enhances 60.78% compared to single IDT structure. The particle manipulation range of the diffractive acoustic field greatly improves, verified by experimental polystyrene microspheres. Besides, biocompatibility is conformed through red blood cells and Bacillus subtilis. We investigate the overall shift of periodic pressure field that can still occur when the phase changes. This work provides a simpler and low-cost solution for the application of acoustic tweezer in biological cell culture and filtering.

5.
Micromachines (Basel) ; 14(11)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-38004845

RESUMO

In micron or nano smart sensing systems, piezoelectric cantilever beams are distributed as major components in microsensors, actuators, and energy harvesters. This paper investigates the performance of four cantilever beam devices with "electric-force" conversion based on the inverse piezoelectric effect of lithium niobate (LiNbO3, LN) single-crystal materials. A new compact piezoelectric smart device model is proposed, designed as a single mass block connected by four beams, where devices exhibit smaller lateral errors (0.39-0.41%). The relationship between the displacement characteristics of cantilever beams and driving voltage was researched by applying excitation signals. The results show that the device has the maximum displacement at a first-order intrinsic frequency (fosc = 11.338 kHz), while the displacement shows a good linear relationship (R2 = 0.998) with driving voltage. The square wave signals of the same amplitude have greater "electrical-force" conversion efficiency. The output displacement can reach 12 nm, which is much higher than the output displacement with sinusoidal excitation. In addition, the relative displacement deviation of devices can be maintained within ±1% under multiple cycles of electrical signal loading. The small size, high reliability, and ultra-stability of Si-LN ferroelectric single-crystal cantilever beam devices with lower vibration amplitudes are promising for nanopositioning techniques in microscopy, diagnostics, and high-precision manufacturing applications.

6.
Macromolecules ; 56(16): 6452-6460, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37637305

RESUMO

In dynamic polyamide networks, 1,2,4,5-benzene tetraamide (B4A) units act simultaneously as a dynamic covalent cross-linker and as supramolecular stacking motif. This results in materials with a rubbery plateau modulus that is about 20 times higher than that of a corresponding reference network in which the supramolecular interaction is suppressed. In branched polyamides with the same B4A dynamic motif, hydrogen bonding and stacking lead to strong and reversible supramolecular networks, whereas a branched polyamide with the nonstacking reference linker is a viscous liquid under the same conditions. Wide-angle X-ray scattering and variable-temperature infrared experiments confirm that covalent cross-linking and stacking cooperatively contribute to the dynamics of the network. Stress relaxation in the reference network is dominated by a single mode related to the dynamic covalent chemistry, whereas relaxation in the B4A network has additional modes assigned to the stacking dynamics.

7.
J Cell Physiol ; 238(10): 2512-2527, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37566721

RESUMO

The mechanism underlying long-term cognitive impairment caused by neonatal hypoxic-ischemic brain injury (HIBI) remains unclear. Autophagy is a closely related mechanism and may play a role in this process. We aimed to investigate the role of lysosomal transmembrane protein 175 (TMEM175) in the autophagy-lysosome pathway in neonatal rats with HIBI. A neonatal rat model of HIBI was established, hypoxia was induced, followed by left common carotid artery ligation. Expression levels of TMEM175 and the corresponding proteins involved in autophagy flux and the endolysosomal system fusion process were measured. Rats were administered TMEM175 plasmid via intracerebroventricular injection to induce overexpression. Brain damage and cognitive function were then assessed. TMEM175 was downregulated in the hippocampal tissue, and the autophagy-lysosome pathway was impaired following HIBI in neonatal rats. Overexpression of TMEM175 significantly mitigated neuronal injury and improved long-term cognitive and memory function in neonatal rats with HIBI. We found that improvement in the autophagy-lysosome pathway and endolysosomal system homeostasis, which are TMEM175 related, occurred via regulation of lysosomal membrane dynamic fusion. TMEM175 plays a critical role in maintaining the autophagy-lysosome pathway and endolysosomal homeostasis, contributing to the amelioration of neuronal injury and impaired long-term cognitive function following neonatal HIBI.

8.
Nanomaterials (Basel) ; 13(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37446437

RESUMO

Ce-based materials have been widely used in photocatalysis and other fields because of their rich redox pairs and oxygen vacancies, despite research on the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) remaining scare. However, most pristine cerium-based materials, such as CeO2, are non-conductive materials. Therefore, how to obtain highly conductive and stable OER/ORR electrocatalysts is currently a hot research topic. To overcome these limitations, researchers have proposed a variety of strategies to promote the development of Ce-based electrocatalysts in recent years. This progress report focuses on reviewing new strategies concerning three categories of Ce-based electrocatalysts: metal-organic framework (MOF) derivatives, structure tuning, and polymetallic doping. It also puts forward the main existing problems and future prospects. The content of cerium in the crust is about 0.0046%, which is the highest among the rare earth elements. As a low-cost rare earth material, Ce-based materials have a bright future in the field of electrocatalysis due to replacing precious metal and some transition metals.

9.
Anal Chim Acta ; 1255: 341138, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37032055

RESUMO

Obtaining highly purified intact living cells from complex environments has been a challenge, such as the isolation of circulating tumor cells (CTCs) from blood. In this work, we demonstrated an acoustic-based ultra-compact device for cell sorting, with a chip size of less than 2 × 1.5 cm2. This single actuator device allows non-invasive and label-free isolation of living cells, offering greater flexibility and applicability. The device performance was optimized with different-sized polystyrene (PS) particles and blood cells spiked with cancer cells. Using the narrow-path travelling surface acoustic wave (np-TSAW), precise isolation of 10 µm particles from a complex mixture of particles (5, 10, 20 µm) and separation of 8 µm and 10 µm particles was achieved. The purified collection of 10 µm particles with high separation efficiency (98.75%) and high purity (98.1%) was achieved by optimizing the input voltage. Further, we investigated the isolation and purification of CTCs (MCF-7, human breast cancer cells) from blood cells with isolation efficiency exceeding 98% and purity reaching 93%. Viabilities of the CTCs harvested from target-outlet were all higher than 97% after culturing for 24, 48, and 72 h, showing good proliferation ability. This novel ultra-miniaturized microfluidic chip demonstrates the ability to sorting cells with high-purity and label-free, providing an attractive miniaturized system alternative to traditional sorting methods.


Assuntos
Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patologia , Separação Celular/métodos , Linhagem Celular Tumoral , Microfluídica/métodos , Som
10.
Nanomaterials (Basel) ; 13(6)2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36985997

RESUMO

The substrate impurities scattering will lead to unstable temperature-sensitive behavior and poor linearity in graphene temperature sensors. And this can be weakened by suspending the graphene structure. Herein, we report a graphene temperature sensing structure, with suspended graphene membranes fabricated on the cavity and non-cavity SiO2/Si substrate, using monolayer, few-layer, and multilayer graphene. The results show that the sensor provides direct electrical readout from temperature to resistance transduction by the nano piezoresistive effect in graphene. And the cavity structure can weaken the substrate impurity scattering and thermal resistance effect, which results in better sensitivity and wide-range temperature sensing. In addition, monolayer graphene is almost no temperature sensitivity. And the few-layer graphene temperature sensitivity, lower than that of the multilayer graphene cavity structure (3.50%/°C), is 1.07%/°C. This work demonstrates that piezoresistive in suspended graphene membranes can effectively enhance the sensitivity and widen the temperature sensor range in NEMS temperature sensors.

11.
Neural Regen Res ; 18(5): 983-990, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36254978

RESUMO

Cerebral ischemia is a serious disease that triggers sequential pathological mechanisms, leading to significant morbidity and mortality. Although most studies to date have typically focused on the lysosome, a single organelle, current evidence supports that the function of lysosomes cannot be separated from that of the endolysosomal system as a whole. The associated membrane fusion functions of this system play a crucial role in the biodegradation of cerebral ischemia-related products. Here, we review the regulation of and the changes that occur in the endolysosomal system after cerebral ischemia, focusing on the latest research progress on membrane fusion function. Numerous proteins, including N-ethylmaleimide-sensitive factor and lysosomal potassium channel transmembrane protein 175, regulate the function of this system. However, these proteins are abnormally expressed after cerebral ischemic injury, which disrupts the normal fusion function of membranes within the endolysosomal system and that between autophagosomes and lysosomes. This results in impaired "maturation" of the endolysosomal system and the collapse of energy metabolism balance and protein homeostasis maintained by the autophagy-lysosomal pathway. Autophagy is the final step in the endolysosomal pathway and contributes to maintaining the dynamic balance of the system. The process of autophagosome-lysosome fusion is a necessary part of autophagy and plays a crucial role in maintaining energy homeostasis and clearing aging proteins. We believe that, in cerebral ischemic injury, the endolysosomal system should be considered as a whole rather than focusing on the lysosome. Understanding how this dynamic system is regulated will provide new ideas for the treatment of cerebral ischemia.

12.
Water Res ; 228(Pt B): 119369, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36434975

RESUMO

Eutrophication and the predicted limited future availability of rock phosphate has triggered the increased development of phosphorus (P) recovery technologies, however, for remote regions, recovery solutions are still limited. Here, we report on a novel pilot-scale technology (FILTRAFLOTM-P reactor) to recover phosphate (PO43-) from wastewater effluent through a filtration/adsorption process in a rural setting. This unit employs enhanced gravitational filtration through adsorption media (here, a novel KOH deacetylated crab carapace based chitosan-calcite material (CCM)) with continuous self-backwashing. Trials were designed to assess how the FILTRAFLOTM-P unit would operate under 'real' conditions (both at low and high PO43- levels), and to ascertain the effectiveness of the adsorbent to recover phosphate from final effluent. High removal was achieved at low phosphate concentrations, bringing the residual effluent PO43- level below 1 mg/L (EU limit for sensitive water bodies), while phosphate was efficiently harvested (at more than 50%) at higher PO43- levels. Surface microprecipitation and inner-sphere complexation were postulated as the main PO43- adsorption mechanisms through XRD, XPS and EDX elemental mapping. Further, a quality assessment of the P-enriched CCM (which could be used as a potential soil amendment) was undertaken to consider elemental composition, microbiological assessment and quantification of organic micropollutants. Quality analysis indicated ∼2.5% P2O5 present, trace levels (well below legislative limits) of heavy metals and extremely low levels of organic pollutants (e.g., PCBs, pharmaceuticals). No detectable levels of target bacterial pathogens were observed. Pot trials showed that ryegrass cultivated with the addition of the CCM adsorbent achieved higher plant dry matter and P concentration when compared to unfertilised controls, with a slow-release kinetic pattern. This study showed that CCM used with the FILTRAFLOTM-P pilot reactor has high potential to recover phosphate from effluents and encourage resource recovery via bio-based management of waste.


Assuntos
Quitosana , Fosfatos , Fertilizantes , Águas Residuárias , Fósforo , Carbonato de Cálcio
13.
Acta bioeth ; 28(2): 301-309, oct. 2022. tab, ilus
Artigo em Inglês | LILACS | ID: biblio-1402921

RESUMO

Abstract: The marketing matrix on a short video platform is an intriguing research topic. It is a novel film marketing strategy on the short video platform that successfully stimulates the audience's emotion in the film marketing process, but it must also be ethically tested.To address this desire, we examine the problem using normative ethics (consequentialism, deontology, and virtue ethics). The marketing matrix will be addressed within the framework of philosophical ethics, whose emotional marketing can be tested, in what follows, through reviews of literature and content analysis. First and foremost, a matrix standpoint will be adopted in order to provide a preliminary conceptualization along with its emotional techniques of the marketing matrix; then, the marketing matrix will be addressed within the framework of philosophical ethics, whose emotional marketing can be tested. In the future, when creating a moral marketing matrix, the author proposes that numerous ethical concepts be taken into account comprehensively.


Resumen: La matriz de marketing en una plataforma de vídeo de corta duración es un tema de investigación intrigante. Se trata de una novedosa estrategia de marketing cinematográfico en la plataforma de vídeos cortos que estimula con éxito la emoción de la audiencia en el proceso de marketing cinematográfico, pero también debe ponerse a prueba desde el punto de vista ético. Para hacerlo, examinamos el problema utilizando la ética normativa (consecuencialismo, deontología y ética de la virtud). La matriz de marketing se abordará en el marco de la ética filosófica, cuyo marketing emocional puede ponerse a prueba, en lo que sigue, mediante revisiones de la literatura y análisis de contenido. En primer lugar, se adoptará un punto de vista matricial para proporcionar una conceptualización preliminar junto con sus técnicas emocionales de la matriz de marketing; a continuación, se abordará la matriz de marketing en el marco de la ética filosófica, cuyo marketing emocional puede ponerse a prueba. En el futuro, a la hora de crear una matriz de marketing moral, el autor propone que se tengan en cuenta numerosos conceptos éticos de forma exhaustiva.


Resumo: A matriz de marketing em plataforma de vídeos curtos é um tópico de pesquisa intrigante. É uma nova estratégia de marketing em plataforma de vídeos curtos que estimula com sucesso as emoções da audiência no processo de marketing, mas deve ser também eticamente testada. Visando esse propósito, nós examinamos o problema usando ética normativa (consequencialismo, deontologia e ética da virtude). A matriz de marketing será abordada na perspectiva da ética filosófica, cujo marketing emocional pode ser testado através de revisões da literatura e de análise de conteúdo. Em primeiro lugar, um ponto de vista de matriz será adotado de forma a fornecer uma conceitualização juntamente com suas técnicas emocionais de matriz de marketing; em seguida, a matriz de marketing será abordada na perspectiva da ética filosófica, cujo marketing emocional pode ser testado. No futuro, ao criar uma matriz de marketing moral, o autor propõe que inúmeros conceitos éticos sejam levados em consideração de forma abrangente.


Assuntos
Humanos , Marketing/ética , Emoções , Princípios Morais , Filmes Cinematográficos/ética , Teoria Ética
14.
Ann Ital Chir ; 93: 457-462, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36155998

RESUMO

OBJECTIVE: To investigate the clinical effect of radiofrequency ozone and injection of anti-inflammatory analgesic solution into the internal orifice of nerve root combined with traditional Chinese medicine hook operation in the treatment of lumbar disc herniation. METHODS: Patients with lumbar disc herniation who were admitted to our hospital on December 20, 2017 and June 19, 2019 were selected as the main research objects, and the included patients were divided into control group, basic group and comprehensive group by random number table method. Control group was treated with radiofrequency ozone therapy, basic group was treated with injection of anti-inflammatory analgesic solution into the internal orifice of nerve root in addition to the control group, comprehensive group was treated with traditional Chinese medicine hook operation in addition to the basic group. The clinical treatment effects were observed. RESULTS: A total of 153 patients were included in this study, including 40 in the control group, 40 in the basic group, and 73 in the comprehensive group. The results showed that the NRS scores of control group were 3±0.98, 2±0.93 and 2±0.85 at 1 month, 3 months and 1 year after treatment, respectively. NRS scores in the basic group were 3±0.18, 2±0.33, and 2±0.15, respectively. NRS scores in the comprehensive group were 2±0.78, 1±0.54, and 1±0.77, respectively. Compared with the control group, there were significant differences in basic group and comprehensive group at each time point (P < 0. 05). At the same time, compared with the basic group, the NRS score of the comprehensive group was statistically different (P < 0.05). CONCLUSION: Radiofrequency ozone and injection of anti-inflammatory analgesic solution into the internal orifice of nerve root combined with hook operation can obtain good short-term and medium-term effects in the treatment of lumbar disc herniation. It is a safe and effective minimally invasive treatment method. KEY WORDS: Internal orifice of nerve root, Lumbar disc herniation, Ozone.


Assuntos
Deslocamento do Disco Intervertebral , Ozônio , Anti-Inflamatórios não Esteroides , Humanos , Deslocamento do Disco Intervertebral/cirurgia , Vértebras Lombares/cirurgia , Ozônio/uso terapêutico , Resultado do Tratamento
15.
Front Cardiovasc Med ; 9: 845210, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35321110

RESUMO

Background: There is currently a lack of model for predicting the occurrence of venous thromboembolism (VTE) in patients with lung cancer. Machine learning (ML) techniques are being increasingly adapted for use in the medical field because of their capabilities of intelligent analysis and scalability. This study aimed to develop and validate ML models to predict the incidence of VTE among lung cancer patients. Methods: Data of lung cancer patients from a Grade 3A cancer hospital in China with and without VTE were included. Patient characteristics and clinical predictors related to VTE were collected. The primary endpoint was the diagnosis of VTE during index hospitalization. We calculated and compared the area under the receiver operating characteristic curve (AUROC) using the selected best-performed model (Random Forest model) through multiple model comparison, as well as investigated feature contributions during the training process with both permutation importance scores and the impurity-based feature importance scores in random forest model. Results: In total, 3,398 patients were included in our study, 125 of whom experienced VTE during their hospital stay. The ROC curve and precision-recall curve (PRC) for Random Forest Model showed an AUROC of 0.91 (95% CI: 0.893-0.926) and an AUPRC of 0.43 (95% CI: 0.363-0.500). For the simplified model, five most relevant features were selected: Karnofsky Performance Status (KPS), a history of VTE, recombinant human endostatin, EGFR-TKI, and platelet count. We re-trained a random forest classifier with results of the AUROC of 0.87 (95% CI: 0.802-0.917) and AUPRC of 0.30 (95% CI: 0.265-0.358), respectively. Conclusion: According to the study results, there was no conspicuous decrease in the model's performance when use fewer features to predict, we concluded that our simplified model would be more applicable in real-life clinical settings. The developed model using ML algorithms in our study has the potential to improve the early detection and prediction of the incidence of VTE in patients with lung cancer.

16.
Micromachines (Basel) ; 13(2)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35208452

RESUMO

It is a great challenge to detect in-situ high-frequency vibration signals for extreme environment applications. A highly sensitive and robust vibration sensor is desired. Among the many piezoelectric materials, single-crystal lithium niobate (LiNbO3) could be a good candidate to meet the demand. In this work, a novel type of micro-electro-mechanical system (MEMS) vibration sensor based on a single crystalline LiNbO3 thin film is demonstrated. Firstly, the four-cantilever-beam MEMS vibration sensor was designed and optimized with the parametric method. The structural dependence on the intrinsic frequency and maximum stress was obtained. Then, the vibration sensor was fabricated using standard MEMS processes. The practical intrinsic frequency of the as-presented vibration sensor was 5.175 kHz, which was close to the calculated and simulated frequency. The dynamic performance of the vibration sensor was tested on a vibration platform after the packaging of the printed circuit board. The effect of acceleration was investigated, and it was observed that the output charge was proportional to the amplitude of the acceleration. As the loading acceleration amplitude is 10 g and the frequency is in the range of 20 to 2400 Hz, the output charge amplitude basically remains stable for the frequency range from 100 Hz to 1400 Hz, but there is a dramatic decrease around 1400 to 2200 Hz, and then it increases significantly. This should be attributed to the significant variation of the damping coefficient near 1800 Hz. Meanwhile, the effect of the temperature on the output was studied. The results show the nearly linear dependence of the output charge on the temperature. The presented MEMS vibration sensors were endowed with a high output performance, linear dependence and stable sensitivity, and could find potential applications for the detection of wide-band high-frequency vibration.

17.
J Healthc Eng ; 2022: 4602428, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35035837

RESUMO

Alzheimer's disease (AD) is recognized as one of the most common types of senile dementia. AD patients first suffer memory loss for recent events (short-term memory impairment). As the disease progresses, they are deprived of self-awareness. This study aims to explore the effects of a probiotic-supplemented diet on the cognitive behaviors and pathological features of mouse models of Alzheimer's disease (AD). Mice in the control group and the 3xTg-AD group were fed a regular diet and a probiotic-supplemented diet, respectively, for 20 weeks. Behavioral experiments like Morris's water maze and Y maze were conducted. Then, feces of mice were collected for 16S sRNA gene sequencing for microorganisms. In the end, soluble and insoluble Aß40 and Aß42 in the hippocampus and cortex of mice in each group were quantitatively analyzed with a double-antibody Sandwich ELISA. The expression levels of tau protein and gliocyte in the hippocampus and cortex were detected using the Western Blot method. The result of the Morris water maze experiment indicated that, in the place navigation test, the mice in the 3xTg-AD group experienced a significant decline in the learning ability and a longer escape latency and in the space exploration test, the swimming time of mice in the 3xTg-AD group in the target quadrant decreased and after being treated with the probiotic diet, mice in the 3xTg-AD group had improved learning and memory ability. The result of Y maze showed that the probiotic diet can improve the spontaneous alternation accuracy of mice in the 3xTg-AD group. The result of 16s rRNA gene sequencing showed that, compared with mice in the WT group, those in the 3xTg-AD group experienced a change in the intestinal flora. The Western Blot result displayed a decreased expression level of tau (pS202) (P < 0.05) and decreased expression levels of Iba-1 and GFAP (P < 0.05). The result of the ELISA experiment showed decreased levels of soluble and insoluble Aß40 and Aß42 in 3xTg-AD mice (P < 0.05). In conclusion, a probiotic diet can prevent and treat AD by improving the intestinal flora of 3xTg-AD.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Probióticos , Doença de Alzheimer/patologia , Animais , Cognição , Dieta , Humanos , Camundongos , Camundongos Transgênicos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Probióticos/uso terapêutico , RNA Ribossômico 16S
18.
Macromolecules ; 54(20): 9703-9711, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34720191

RESUMO

The diamide-imide equilibrium was successfully exploited for the synthesis of dynamic covalent polymer networks in which a dissociative bond exchange mechanism leads to high processibility at temperatures above ≈110 °C. Dynamic covalent networks bridge the gap between thermosets and thermoplastic polymers. At the operating temperature, when the network is fixed, dynamic covalent networks are elastic solids, while at high temperatures, chemical exchange reactions turn the network into a processible viscoelastic material. Upon heating a dissociative network, the viscosity may also decrease due to a shift of the chemical equilibrium; in such materials, the balance between processibility and excessive flow is important. In this study, a network is prepared that upon heating to above ≈110 °C dissociates to a significant extent due to a shift in the amide-imide equilibrium of a bisimide, pyromellitic diimide, in combination with poly(tetrahydrofuran) diamines. At room temperature, the resulting materials are elastic rubbers with a tensile modulus of 2-10 MPa, and they become predominantly viscous above a temperature of approximately 110 °C, which is dependent on the stoichiometry of the components. The diamide-imide equilibrium was studied in model reactions with NMR, and variable temperature infrared (IR) spectroscopy was used to investigate the temperature dependence of the equilibrium in the network. The temperature-dependent mechanical properties of the networks were found to be fully reversible, and the material could be reprocessed several times without loss of properties such as modulus or strain at break. The high processibility of these networks at elevated temperatures creates opportunities in additive manufacturing applications such as selective laser sintering.

19.
Macromolecules ; 54(17): 7955-7962, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34552277

RESUMO

Bond exchange via neighboring group-assisted reactions in dynamic covalent networks results in efficient mechanical relaxation. In Nature, the high reactivity of RNA toward nucleophilic substitution is largely attributed to the formation of a cyclic phosphate ester intermediate via neighboring group participation. We took inspiration from RNA to develop a dynamic covalent network based on ß-hydroxyl-mediated transesterifications of hydroxyethyl phosphate triesters. A simple one-step synthetic strategy provided a network containing phosphate triesters with a pendant hydroxyethyl group. 31P solid-state NMR demonstrated that a cyclic phosphate triester is an intermediate in transesterification, leading to dissociative network rearrangement. Significant viscous flow at 60-100 °C makes the material suitable for fast processing via extrusion and compression molding.

20.
Macromol Rapid Commun ; 42(14): e2100157, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33938066

RESUMO

Untethered, light-responsive, high-stress-generating actuators based on widely-used commercial polymers are appealing for applications in soft robotics. However, the construction of actuators that are stable and reversibly responsive to low-intensity ultraviolet, visible, and infrared lights remains challenging. Here, transparent, stress-generating actuators are reported based on ultradrawn, ultrahigh molecular weight polyethylene films. The composite films have different draw ratios (30, 70, and 100) and contain a small amount of graphene in combination with ultraviolet and near-infrared-absorbing dyes. The composite actuators respond rapidly (t0.9 < 0.8 s) to different wavelengths of light (i.e., 780, 455, and 365 nm). A maximum photoinduced stress of 35 MPa is achieved at a draw ratio of 70 under near-infrared light irradiation. The photoinduced stress increases linearly with the light intensity, indicating the transfer of light into thermally induced mechanical contraction. Moreover, the addition of additives lead to a reduction in the plastic creep rate of the drawn films compared to their nonmodified counterparts.


Assuntos
Grafite , Polímeros , Raios Infravermelhos , Plásticos , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...